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Cage Compounds as Potential Energetic Oxidizers: A 
Theoretical Study of a Cage Isomer of N2O3 

Robert J. Buszek[a] and Jerry A. Boatz*[b] 
Abstract: Ab initio electronic structure calculations are employed to investigate the cage isomer of N2O3 (c-N2O3) as a viable energetic 
oxidizer.  c-N2O3 is vibrationally stable with a large heat of formation of 7.95 kJ g-1 and  can produce  larger enthalpies of combustion than 
other commonly used oxidizers such as ammonium perchlorate, O2(l) and N2O4.  c-N2O3 is shown to have a unimolecular decomposition 
barrier of 23.6 kJ mol-1 at the CCSD(T)/CBS(T-Q) level of theory, and a bimolecular decomposition barrier of 100.8 kJ mol-1.  Although c-N2O3 
is predicted  to perform  well as an oxidizer, the low barrier to unimolecular decomposition is likely to render it impractical as an energetic 
oxidizer. 
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1 Introduction 
Driven by the need for better performing, low cost, and 
environmentally friendly propellants and explosives, 
the energetic materials community is constantly 
searching for novel species to accomplish this. 
Perchlorates have long been used as oxidizers by the 
energetic community, particularly ammonium 
perchlorate (AP) which has been widely used in solid 
rocket motors for the past 50 years.  Ammonium 
perchlorate is stable at room temperature, 
decomposes at temperatures above 150˚C and ignites 
at temperatures greater than 440˚C, with an activation 
energy of ~167 kJ mol-1.[1]  While AP is commonly 
used, one of its major drawbacks is its toxicity.  The 
byproducts produced by AP upon combustion include 
hydrochloric acid and chlorine gas, both of which are 
toxic and environmentally hazardous. [1] As such, an 
environmentally benign replacement for AP which will 
yield  similar or superior performance, is very desirable. 

The potential performance advantages of 
energetic compounds with cage-like structures are 
illustrated by 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-
hexaazaisowurtiane (CL-20), heptanitrocubane (HNC), 
and octanitrocubane (ONC), which are arguably 
among the most energetic compounds known.  The 
performances of CL-20[2] and ONC are predicted to 
be approximately 14% and 15-30% better, respectively, 
than HMX[3,4],the most powerful standard explosive 
used by the military.  The increase in performance 
seen in these species comes from several properties 
directly attributed to the cage conformation, including 
increased density and potential energy.  Because of 
their compact structures, the density of these materials 
is larger than conventional  energetic materials, with 
ONC having the largest density of any known CHNO- 
containing compound of ~2.1 g cm-3[4,5], whereas 
HMX and TNT have densities of ~1.9 and 1.6 g cm-3 
respectively[4].  The majority of the improved 
performance can be attributed to the fact that these 
structures harness a tremendous amount of potential 

energy due to the inherent internal strain in such 
molecules.  This is reflected in the heats of formation 
for these species, which are: ONC (1.09 kJ g-1) [5] > 
CL-20 (~0.97 kJ g-1) [6] > HMX (0.25 kJ g-1 [7].)  A 
recent study[8] has shown that all of the additional 
energy exhibited by these cage species comes directly 
from the strain due to the cage structure.  In the case 
of ONC, the cubane framework is responsible for the 
majority of the energy, whereas in CL-20 it is the 
resulting or enhanced strain among the NO2 ligands.[8]  
While there has been a significant amount of work on 
the use of cage structures for fuels[2-6,8,9], none have 
been investigated as potential oxidizers.  This study 
aims to investigate the feasibility of a novel N-O cage 
oxidizer, specifically N2O3, for use as the replacement 
of AP. 

The planar isomer of N2O3 has been  well 
studied for the role it plays in the atmospheric NOx 
cycle as a reservoir for NO and NO2[10], which are 
pollutants in the troposphere and can contribute to 
ozone depletion in the stratosphere.  N2O3 has also 
been investigated as a reactive nitrogen oxide species 
(RNOS) relevant to numerous human diseases[11].  
N2O3 is known to exist as three different isomers.   The 
global minimum is planar, with a weak N-N bond (ON--
-NO2), and has been experimentally observed [12,13]  
and can isomerize to the slightly less stable C2v-
symmetric planar isomer O=N-O-N=O.[13].  A third 
isomer, cis-trans N2O3 has also been recently verified 
in an argon matrix [14].  These studies have also been 
thoroughly supported by numerous theoretical works 
[15].  Nitrogen oxide rings and cages have been 
theoretically studied [16-18], including the cage isomer 
of N2O3, and shown to be promising high energy 
density materials (HEDMs) due to their high 
exothermicity upon degradation.  However, not all of 
these clusters are sufficiently stable to be practical 
HEDMs.  Nonetheless it has been shown that there 
are numerous stable N-O clusters, with activation 
energies greater than 125 kJ mol-1[17].  Furthermore, it 
has also been shown that the addition of external 
covalent oxygens to nitrogen clusters have a 
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stabilizing effect, increasing the activation barriers to 
unimolecular dissociation.[18]  

This paper uses ab initio methods to 
investigate the feasibility of an energetic oxidizer in the 
form of the cage isomer NO3N, shown in Figure 1 and 
hereafter denoted as c-N2O3, which is the simplest of 
the family of N2xO3x cage molecules.  The feasibility of 
c-N2O3 as a potential energetic oxidizer is assessed in 
this study by   computed heats of formation and 
combustion relative to other common oxidizers, and  
its stability with respect to unimolecular and 
bimolecular decomposition. 

 

Figure 1. CCSD(T)/aug-cc-pVQZ geometry of c-N2O3.  
Bond lengths in Å and angles in degrees. 

2 Results and Discussion 
The D3h-symmetric 2cage structure of N2O3 (c-N2O3), 
as seen in Figure 1, is  a local minimum on the N2O3 
potential energy surface.  The N-O bond lengths of c-
N2O3 are 1.480 Å, which unsurprisingly are rather long 
compared to what is experimentally seen in other N-O 
containing species, with the average experimental N-O 
single bond length being 1.365±0.1 Å according to the 
NIST database[19].  The long N-O bond lengths are 
consistent with the tremendous amount of strain in c-
N2O3, which is further exhibited in both the N-O-N and 
O-N-O bond angles of c-N2O3.  The N-O-N and O-N-O 
angles in c-N2O3 are 74.9˚ and 86.9˚ respectively, 
compared to the previously calculated N-O-N angle of 
112.6˚ in N2O5 and the experimental average of 116.3˚ 
for O-N-O.   These extremely strained bond angles 
contribute to the large enthalpy of formation of c-N2O3 
of 8.0 kJ g-1, calculated using G3(MP2), which is nearly 
8 times larger than that of ONC.   The large enthalpy of 
formation of c-N2O3, coupled with its high estimated 
density of 1.93 g cm-3 obtained using the density 
models of Rice and Byrd,[20] makes this an attractive 
potential ingredient for advanced oxidizers.  The 
electronic stability of c-N2O3 is indicated by its HOMO-
LUMO gap of 1483.2 kJ mol-1 and a vertical excitation 
to the triplet state of 551.0 kJ mol-1 calculated at the 
MP2/aug-cc-pVDZ level of theory. 

The predicted performance of c-N2O3 as an 
oxidizer is illustrated in Table 1, which compares the 
ideal enthalpies of combustion of several fuel/oxidizer 
combinations.  For example, the combustion enthalpy 

of pure bulk aluminum with ammonium perchlorate 
(AP) is -1659 kJ mol-1 or -30.7 kJ per gram of 
aluminum.  Replacement of AP with c-N2O3 as the 
oxidizer increases the combustion exothermicity by 
nearly 570 kJ mol-1 to -2228 kJ mol-1, or -41.3 kJ per 
gram of fuel.  Besides yielding a significant 
performance increase, use of c-N2O3  as the oxidizer 
precludes the generation of environmentally hazardous 
HCl as a combustion byproduct. 

Table 1. Calculated enthalpies of combustion(kJ mol-1) 

Fuel Oxidizer Combustion Reactiona ∆Hcomb 
b 

Al(s) NH4ClO4(s)
2Al(s) + NH4ClO4(s) → Al2O3(l) + N2(g)

+ H2(g) + HCl(g) + H2O(g) 
-1658.9 (-30.7) 

Al(s) c-N2O3(g) 2Al(s) + c-N2O3(g) → Al2O3(l) + N2(g) -2228.3 (-41.3) 

n-C6H14(l) O2(l) C6H14(l) + O2(l) → 6CO(g) + 7H2O(g) -2157.3 (-25.1) 

n-C6H14(l) c-N2O3(g) 
C6H14(l) + c-N2O3(g) → 6CO(g) + 

7H2O(g) + N2(g) 
-4790.6 (-55.7) 

MMH(l) N2O4(l) 
CN2H6(l) + N2O4(l) → CO(g) + 

3H2O(g) + 2N2(g) 
-870.6 (-18.9) 

MMH(l) N2O4(g) 
CN2H6(l) + N2O4(l) → CO(g) + 

3H2O(g) + 2N2(g) 
-899.2 (-19.5) 

MMH(l) c-N2O3(g) 
CN2H6(l) + c-N2O3(g) → CO(g) + 

3H2O(g) + N2(g) 
-1700.4 (-37.0) 

aExperimental enthalpies of formation (kJ mol-1) taken 
from the NIST Chemistry WebBook. bEnthalpies of 
combustion at T=298K..  Values in parentheses are 
enthalpies per gram of fuel (kJ g-1.) 
 

Table 1 also shows the combustion enthalpies 
of n-hexane (n-C6H14), used here as a simple model 
for a hydrocarbon-based fuel such as RP-1.  Using 
liquid oxygen (LOX) as the oxidizer yields a 
combustion enthalpy of -2157 kJ mol-1 (-25.1 kJ per 
gram of n-hexane).  The combustion enthalpies are 
more than doubled (-4791 kJ mol-1; -55.7 kJ per gram 
of n-hexane) when c-N2O3 is used in place of LOX.  As 
a final example, the combustion enthalpy of 
monomethylhydrazine (MMH) with liquid nitrogen 
tetraoxide is -871 kJ mol-1 (18.9 kJ per gram of MMH) 
or -899 (19.5 kJ per gram of MMH) kJ mol-1 when N2O4 
is in the gas phase.   With c-N2O3 as the oxidizer in 
place of N2O4, the combustion enthalpy of MMH is 
nearly doubled, to -1700 kJ mol-1 (-37.0 kJ per gram 
MMH).  In summary, the data in Table 1 clearly 
illustrate the theoretical performance improvements in 
combustion enthalpies when using c-N2O3 in place of 
conventional oxidizers. 

Naturally with such geometric strain and high 
heat of formation, it is important to understand the 
barriers to thermal decomposition of c-N2O3.  The 
potential energy surface (PES) for unimolecular 
decomposition has been investigated at the 
CCSD(T)/CBS level of theory.  As seen in Figure 2, 
decomposition is initiated with the simultaneous 
breaking of two N-O bonds in c-N2O3, with a relatively 
small barrier of 23.6 kJ mol-1 via the transition state 
labeled TS1.  This saddle point leads to formation of  
intermediate INT1, also referred to as cis-trans N2O3 in 
the literature[13].  At this point, the PES splits into two 
distinct pathways.  The  kinetically favored path passes 
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through TS2, with a barrier of 15.6 kJ mol-1 with 
respect to INT1.  Along this path, an NO moeity 
undergoes internal rotation to form the symmetric C2v 
isomer, sym-N2O3.  Through TS3, with a barrier of 57.1 
kJ mol-1 with respect to INT1, an NO moeity 
dissociates form the central oxygen in INT1 and 
reattaches to the nitrogen atom to form the 
thermodynamically favored asymmetric planar N2O3 
isomer.  

 
Figure 2. Potential energy surface of the unimolecular 
decomposition of c-N2O3 Structures and relative 
energies calculated at the CCSD(T)/aug-cc-pVQZ and 
CCSD(T)/CBS levels, respectivly.  Energies are in kJ 
mol-1. 

 

Both of these planar N2O3 species are 
expected to further decompose into NO and NO2 due 
to the tremendous amount of energy released form the 
initial bond breaking of c-N2O3.  

As is evident from the calculated PES, c-N2O3 
has the potential to be a very energetic oxidizer, as 
indicated by the large amount of energy released upon 
decomposition.  However, the kinetic stability of c-N2O3 
is marginal, as the barrier for unimolecular 
decomposition is only 23.6 kJ mol-1, which is far lower 
than some of the more common explosives such as 
RDX[21] and CL-20[22] with unimolecular 
decomposition barriers of 151.0-162.8 and 191.6 kJ 
mol-1 respectively.  As the stability is of concern with 
such a low barrier to the unimolecular decomposition, 
is it also important to investigate the possibility of 
bimolecular decomposition. This was investigated by 
calculating the (c-N2O3)2 bimolecular interaction 
potential, which is shown in Figure 3.  Although not 
apparent on the energy scale in  Figure 3, the c-N2O3 
dimer is weakly bound by 14.2 kJ mol-1 relative to the 
separated monomers.  Also shown in Figure 3 is a 
transition state for the intermolecular decomposition, 
which has a barrier of 100.8 kJ mol-1 (at the MP2/aug-
cc-pVDZ level) with respect to the c-N2O3 dimer.  This 
transition state is similar to the unimolecular 
decomposition in opening the cage structure.  
However, in the bimolecular decomposition, a  single 
N-O bond scission  per c-N2O3 occurs, in contrast  to 
two N-O bond scissions in the unimolecular 
decomposition shown in Figure 2.   However, the 

bimolecular  barrier is over 4 times as large as the 
unimolecular decomposition barrier.  This result is 
similar to the behavior of the isoelectronic  “CLL-1” 
species[23] in which bimolecular decomposition has an 
energetic barrier 3.45 times greater than that of the 
unimolecular decomposition. Therefore, it is 
anticipated that decomposition of c-N2O3 will be 
dominated by unimolecular processes. 

 Figure 3. Intrinsic Reaction Coordinate (IRC) for the 
c-N2O3 dimer transition state 

3 Theoretical Methods  
All geometries and frequencies of c-N2O3 and its 
unimolecular decomposition intermediates and 
products are calculated at the CCSD and 
CCSD(T)/aug-cc-pV(D,T,Q)Z levels of theory.  All 
structural and vibrational data reported herein are  at 
the CCSD(T)/aug-cc-pVQZ level of theory and all 
energetic data at the CCSD(T)/CBS level.  The 
cartesian coordinates and harmonic vibrational 
frequencies  at the CCSD(T)/aug-cc-pVQZ for all 
relevant species of the unimolecular decompostion can 
be found in the supplementary information, along with 
all CCSD and CCSD(T)/aug-cc-pV(D,T.Q) energies 
and CBS data.  First order saddle points have been 
verified as such via the presence of a single negative 
eigenvalue (corresponding to an imaginary harmonic 
vibrational frequency) of the diagonalized  mass-
weighted hessian matrix. Intrinsic reaction coordinate 
(IRC) calculations[24] are performed to trace the 
minimum energy path from each saddle point to 
reactants and products.  The open shell species have 
been calculated using restricted open-shell Hartree-
Fock (ROHF) reference wave functions and the 
completly renormalized coupled cluster method, CR-
CC(2,3),D.[25]  The energies of all species were 
extrapolated to the complete basis set limit (CBS) 
using the linear Schwenke extrapolation [26], as 
shown in eq. 1, where in this study  refers to 

energies using the aug-cc-pVTZ basis  and  to 
the aug-cc-pVQZ energies, C is for the separated SCF, 
CCSD and (T) energy components and F is an 
optimized parameter for each, all of which are 
available in the supplemental section. 
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   (1) 
 
The geometries and transition states used for 
investigating the c-N2O3 dimer interaction as a model 
for the condensed phase were calculated  at the 
MP2/aug-cc-pVDZ level.  The reactants and products 
linked to the transition states found here were  
confirmed by IRC calculations.  All of the calculations 
used in this study were performed using the GÅMESS 
quantum chemistry code[27]. 

4 Conclusion 
In this paper c-N2O3 was investigated as a potential 
energetic oxidizer.  c-N2O3 was found to be a local 
minima on the N2O3 potential energy surface, with a 
large heat of formation of 604.25 kJ mol-1 (7.95 kJ g-1) 
due to a tremendous amount of strain in the N-O-N 
and O-N-O angles.  The gas phase unimolecular 
decomposition of c-N2O3 has a small barrier of 23.6 kJ 
mol-1 to form NO + NO2.  Further investigation into the 
decomposition pathway of c-N2O3 was done by looking 
at the bimolecular decomposition as a simple probe of 
stability in the condensed phase.  The bimolecular 
decomposition reaction pathway has an activation 
barrier of over 100 kJ mol-1 and takes place via rupture 
of a single N-O bond in each c-N2O3 monomer, as 
opposed to two N-O bond scissions in unimolecular  
decomposition.  Therefore, c-N2O3 is unlikely to be a 
practical energetic oxidizer due to its low unimolecular  
decomposition barrier. 
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